
PHYSICAL REVIEW E, VOLUME 65, 046133
Kink production in the presence of random distributed impurities
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Production of kinks during a quench in an overdamped regime off4 model is investigated. An influence of
random distributed impurities on defect production is studied.
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I. INTRODUCTION

In recent years there has been growing interest in extr
ing information about production of topological defects
classical field theories at finite temperatures. The motiva
for these investigations is provided by the possibility that
topological defects produced during the transitions at G
scale can be responsible for providing inhomogeneities
ficient for galaxy formation in the early Universe@1#. These
investigations are encouraged by the easy access to
densed matter systems that provide the field for experime
verification of the possible theoretical scenarios@2#. Particu-
lary interesting in this context is the behavior of the quant
liquids @3#.

The dynamics of the transition was first explained
Kibble and Zurek. They proposed two complementary s
narios. Kibble in his scenario@4# emphasized an importanc
of the nucleation processes in creation of the topological
fects during the first order phase transition, on the ot
hand, Zurek stressed that the nonequilibrium dynamics
crucial for behavior of the system during the second or
phase transition@5#.

Zurek noticed that, as a result of critical slowing dow
the state of the system that crosses the critical region
finite pace will inevitably cease to keep up with the chang
of thermodynamic parameters at some point sufficiently n
the critical temperature. In a homogenous quench, this
happen everywhere at the same time. The time when
system loses the ability to respond for the changes of ex
nal parameters is called freeze-in time. The correlat
length at the same time after the transition, i.e., at instan
time when the system regains capacity to respond to cha
of external parameters~freeze-out time!, determines the ini-
tial density of defect network. After this discovery th
progress in this matter concerned mainly on the descrip
of the systems driven by white Gaussian noise@5,6#.

On the other hand, we know that, in most of the physi
contexts, the population of the condensed matter system
impurities is inevitable outcome of their preparation. In sp
of the fact that the presence of impurities and admixtu
may completely change properties of the system, preva
part of the obtained hitherto results concern homogen
medium.

The phase transition in liquid crystals is a nice example
the system that can be easily studied experimentally and
can be occupied by impurities. Moreover, liquid crystals
low us to study the production of topological defects. Ho
ever, the transition in this system is a little different from t
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pure second order because near critical temperature a
zero energy barrier occurs. In these settings the pure f
vacuum instability that is described by Zurek scenario
camouflaged by the thermal nucleation.

The other systems that can be easily contaminated and
described by Zurek scenario are superconductors of sec
type. They seem to be particularly useful in testing an infl
ence of impurities and admixtures on defect formation.

The other context is provided by superfluid liquids. U
fortunately the solubility of all foreign materials in liquid
helium is near zero. The only way of contamination of H
lium 3 or 4 is by using an aerogel technique@7#. In this
context the question rise if the level of contamination p
vided by the aerogel, which is a matrix of randomly arrang
silica filaments of nanometer diameter, can have any obs
able effect on defect production?

The aim of this paper is to discuss an influence of
randomly distributed spatial inhomogeneities~which repre-
sent impurities in the system! on defect production during a
quench. The model to be studied here is a kink-bearingf4

field theory in (111) dimensions. This model is so popula
because its properties are representative for many phy
systems that undergo a transition from a spatially uniform
one of lower symmetry states.

The paper is organized as follows. The following secti
contains the generalization of the Halperin formula to d
scription of the system populated by randomly distribut
impurities. In Sec. III we consider an example of spatia
correlated noise of Ornstein-Uhlenbeck type. Section IV c
tains remarks.

II. THE HALPERIN FORMULA FOR RANDOMLY
DISTRIBUTED IMPURITIES

The number density of zeros of the scalar field is cal
lated as a sum over all pointsxi , defined by the equation
f(t,xi)50 @8#

n[$n~ t,x!%5H lim
L→0

^N&
2L J 5H lim

L→0

1

2L K (
i

uf8~ t,xi !u

uf8~ t,xi !u
L J .

~1!

The brackets in this formula denote averaging with respec
realizations of the temperature noise^•••&, and the spatial
distributions of the impurities$•••%. We calculate the num-
ber of produced defects in the overdampedf4 model
©2002 The American Physical Society33-1
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ĝ] tf~ t,x!5]x
2f~ t,x!2a~ t !f~ t,x!2lf3~ t,x!1h~ t,x!

1D~ t,x!, ~2!

whereh(t,x) represents a temperature noise~it is assumed
that this is a purely white Gaussian noise!, D(t,x) represents
a force coming from randomly distributed impurities andĝ is
an integral operator@9# that follows from a linear fluctuation
dissipation relation~in case of white Gaussian noise it is ju
damping constantg). We assume that random forces are d
fined by the cumulants,

^h~ t,x!&50,

^h~ t,x!h~ t8,x8!&5
2pg

b
d~x2x8!d~ t2t8!, ~3!

and

$D~ t,x!%50,

$D~ t,x!D~ t8,x8!%5
1

b
W~ ux2x8u!d~ t2t8!. ~4!

We intend to calculate the number of kinks produced dur
a quench just after the transition time, i.e., at freeze-out ti
We know that just before and after instant of transition
order parameter is so small that a cubic term is negligible
comparison with linear terms. We also assume that in lin
approximation an influence of the thermal noise and the r
dom impurity force on the evolution of the order parame
can be described by additive variablesf(t,x)5c(t,x)
1u(t,x) that satisfy equations of motion,

g] tc~ t,x!5]x
2c~ t,x!2a~ t !c~ t,x!1h~ t,x!, ~5!

ĝ* ] tu~ t,x!5]x
2u~ t,x!2a~ t !u~ t,x!1D~ t,x!. ~6!

In this situation the number density of produced defects
described by the formula

n5
1

p
A^c82 &

^c2&
H expF2

u2

2^c2&
2

u82

2^c82 &
G J

1
1

p

1

A^c2&^c82&
H u8e2u2/2^c2&E

0

u8
dũ8e2ũ82/2^c82 &J ,

~7!

where we have to calculate averages over realizations o
impurity force. In this purpose first we introduce a new i
tegration variables5ũ8/u8 and then we replace average
the products by the product of averages, i.e.,

H expF2
u2

2^c2&
2

u82

2^c82 &
G J 5$e2u2/2^c2&%$e2u82/2^c82 &%,

~8!
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H u82e2u2/2^c2&E
0

1

dsexpS 2
s2u82

2^c82&
D J

5$e2u2/2^c2&%H u82E
0

1

dsexpS 2
s2u82

2^c82 &
D J . ~9!

This replacements are possible because for cumulants~8! and
~9! odd terms in Wick expansion of the exponents disapp
~see@8# for details!. Now we have to calculate the averag
of the exponents. For instance,

$e2u2/2^c2&%5 (
n50

`
~21!n

2nn!
H S u2

^c2&
D nJ

5 (
n50

`

~21!n
~2n21!!!

~2n!!! S $u2%

^c2&
D n

, ~10!

where we used a Wick theorem. The last series can be e
summed up

$e2u2/2^c2&%5
1

A11
$u2%

^c2&

. ~11!

In similar way we can sum up the other exponents. An in
gral we average using the same type of expansion and
by changing an order of a sum and the integral we obtai

E
0

1

dsH u82expS 2
s2u82

2^c82&
D J 5

$u82%

A11
$u82%

^c82 &

. ~12!

Now we have averaged number density of zeros produce
the presence of random impurity force,

n5
1

p
A^c82 &

^c2&

1

A11
$u2%

^c2&

1

A11
$u82%

^c82&

1
1

p

1

A^c2&^c82&

1

A11
$u2%

^c2&

$u82%

A11
$u82%

^c82 &

.

~13!

Simple algebra provides the formula that in elegant way c
responds to Liu-Mazenko-Halperin formula

n5
1

p
A^c82 &1$u82%

^c2&1$u2%
. ~14!
3-2
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Let us notice that this formula provides the way of estim
tion of number density of defects in any spatially correla
noise. At this point it is worth to stress that there exists a
the other possible way of entering the noises character
by a new length scale. It seems that the presence of qu
particles in superfluid liquids provides a bath equipped
new length and time scales such as the mean free path
can make the noise spatially correlated or even colorful@10#.
The Liu-Mazenko-Halperin@11# formula is restored in cas
when the random impurity force is absent in Eq~2!, i.e.,
D(t,x)50 and, therefore,$u2%5$u82%50

n5
1

p
A^c82&

^c2&
. ~15!

III. AN INFLUENCE OF RANDOM SPATIALLY
CORRELATED IMPURITY FORCE ON DEFECT

PRODUCTION

The Fourier transformation of the equations of moti
c(t,x)5*2`

` dkeikxc̃(t,k) enables to find Green functions o
the equations~5! and ~6!

g] tc̃~ t,k!1k2c̃~ t,k!1a~ t !c̃~ t,k!5h̃~ t,k!, ~16!

W̃~k!] tũ~ t,k!1k2ũ~ t,k!1a~ t !ũ~ t,k!5D̃~ t,k!. ~17!

Actually in further calculus we choose units in such a way
to haveg51. For instance, the solution of the Eq.~16! have
the form

c̃~ t,k!5E
2`

t

dt1expH 2E
t1

t

dt2@k21a~ t2!#J h̃~ t1 ,k!.

~18!

The power spectrum for the variablec is defined by the
equality

^c̃~ t,k!c̃~ t8,k8!& t5t85Pc~ t,k!d~k2k8!. ~19!

The solution~18! together with the thermal noise cumulan
allows to find the power spectrum. For sufficiently late tim
it has the form

Pc~ t,k!'
1

b
Aptet2/te22k2tetk4

. ~20!

This power spectrum blows up atte'At. This is the time
when the linear approximation fails, therefore, it is identifi
with the freeze-out time~in fact, this is the instant of time
when the nonlinear dynamics enters into description of
system!. On the other hand power spectrum of the impur
component is defined by the equal time correlator of
second function

$ũ~ t,k!ũ~ t8,k8!%t5t85Pu~ t,k!d~k2k8!. ~21!

The power spectrum in this case is modified by the funct
W̃ that defines the noise cummulant
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$D̃~ t,k!D̃~ t8,k8!%5
1

b
W̃~ uku!d~k2k8!d~ t2t8!. ~22!

In the above mentioned regime the power spectrum has
form

Pu~ t,k!'
1

bW̃
Aptet2/W̃te22k2t/W̃etk4/W̃. ~23!

The modes connected with the impurity component blows

at the timete'AW̃(k)t. In fact, different modes blow up a
different times. The number of produced zeros is determi
by the obtained in preceding section formula~14!. This for-
mula can also be rewritten with the use of the power sp
trums of the thermal and impurity components

n5
1

pAE
0

km
dkk2Pc1E

0

km8 dkk2Pu

E
0

km
dkPc1E

0

km8 dkPu

. ~24!

An obvious fact is that a number of produced zeros is in
nite. This is a consequence of the structure of the no
Although zeros are produced on all scales not all zeros
produce kink structures. We know that only zeros separa
at least by the correlation length can produce stable kin
Stable and unstable modes can be determined from lin
ized equations of motion~5! and ~6!. In the language of the
Fourier components the stable long range spatial struct
can be produced by the unstable modes of the Eqs.~16! and
~17! because only those modes can grow to produce st
kink structures. Therefore the integration in the formula~24!
have to be restricted to momentums smaller than cutoff
termined from the equationkm

2 2te /t50. Thus the cutoff in
momentum for thermal component is the followingkm

5Ate /t5t21/4. In case of the impurity component the cu
off strongly depends on the model. This cutoff is a soluti
of the equationkm8

45W̃(ukm8 u)/t. We assume a noise cor

relator amplitude in the formW̃(uku)5a/(11L2k2). Under
choicea5(1/pAL) this amplitude is the Fourier transforma
tion of the well known Ornstein-Uhlenbeck distributio
W(uxu)5Ae2uxu/L that in the limit L→0 reducesD(t,x) to
white Gaussian noise. We consider two cases.~1! L4@t then
km8 '2/3t1/4, ~2! L4;t then km8 '1/L, wherekm8 was calcu-

lated from equationkm8
45W̃(ukm8 u)/t. The number density of

produced defects in the first regime can be approximate
follows:

n'0.1
1

~Lt1/4!1/2
. ~25!

We see that the characteristic length scale of the impu
noise enters the number density of the produced kinks. In
second regime the number density formula shows the c
tinuous transition from thermal noise dominance to impur
dominated regime@9#
3-3
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n'
1

p
A0.43b/t1/210.34c/L2

1.81b10.83c
, ~26!

whereb51/t1/4 andc5L/At. We see that if the impurities
are absent or week~i.e.,A is small! we have classical scalin
n;1/t1/4 @5#. On the other hand, if transition takes place f
very low temperatures then thermal fluctuations are alm
absent and the number density is determined by the impu
noise length scalen;1/L.

IV. REMARKS

In present paper we propose an extension of the des
tion of the production of the topological defects to the s
tems populated by the impurities. In present approach,
demonstrate the comprehensive treatment of impurities
spatially correlated additive noise. This approach is a nat
development of the description of the impurities and adm
tures proposed in paper@8#. We know that there exists two
equally important components of the dynamics leading
production of the topological defects. First is a noise t
provides the large number of zeros, which are candidates
r
e,

,
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future kinks. The second component is a correlation length
the order parameter that provides a length scale descri
minimal separation of kinks. The obvious fact is that if zer
are much closer to each other than the correlation len
than the correlation length cutoff completely determines
density of produced kinks. This is a case dominated by
white Gaussian thermal noise. On the other hand, if the s
tially correlated noise prevails then the density of the init
network of zeros is mainly determined by the noise char
teristic length scale. It is reasonable that if at freeze-out ti
zeros are separated by the distance larger than the correl
length then the density of produced kinks is smaller than
density of kinks predicted in previous case. In the seco
regime the noise length scale enters the number densit
produced kinks formula. We have also shown an example
the spatial Ornstein-Uhlenbeck noise the entrance betw
two regimes. In the regime dominated by the thermal no
the typical scaling is captured, i.e.,n;1/t1/4. On the other
hand, if the impurity noise dominates in the system then
kink distribution is determined by the noise characteris
length scalen;1/L.
ys.
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