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Kink production in the presence of random distributed impurities
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Production of kinks during a quench in an overdamped regimg*ahodel is investigated. An influence of
random distributed impurities on defect production is studied.
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[. INTRODUCTION pure second order because near critical temperature a non-
zero energy barrier occurs. In these settings the pure false
In recent years there has been growing interest in extrac¥acuum instability that is described by Zurek scenario is
ing information about production of topological defects in camouflaged by the thermal nucleation.
classical field theories at finite temperatures. The motivation The other systems that can be easily contaminated and are
for these investigations is provided by the possibility that thedescribed by Zurek scenario are superconductors of second
topological defects produced during the transitions at GUTyPe. They seem to be particularly useful in testing an influ-
scale can be responsible for providing inhomogeneities sufence of impurities and admixtures on defect formation.
ficient for galaxy formation in the early Univer§g]. These The other context is provided by superfluid liquids. Un-
investigations are encouraged by the easy access to coffrtunately the solubility of all foreign materials in liquid
densed matter systems that provide the field for experiment&elium is near zero. The only way of contamination of He-

verification of the possible theoretical scenafidh Particu- lium 3 or 4 is by using an aerogel techniq{ig]. In this
lary interesting in this context is the behavior of the quantunfontext the question rise if the level of contamination pro-
liquids [3]. vided by the aerogel, which is a matrix of randomly arranged

The dynamics of the transition was first explained bysilica filaments of nanometer diameter, can have any observ-

Kibble and Zurek. They proposed two complementary sceable effect on defect production?
narios. Kibble in his scenarip!] emphasized an importance ~ The aim of this paper is to discuss an influence of the
of the nucleation processes in creation of the topological detandomly distributed spatial inhomogeneitieshich repre-
fects during the first order phase transition, on the othefent impurities in the systenon defect production during a
hand, Zurek stressed that the nonequilibrium dynamics i§uench. The model to be studied here is a kink-beadifig
crucial for behavior of the system during the second ordefield theory in (1+1) dimensions. This model is so popular
phase transitiofi5]. because its properties are representative for many physical
Zurek noticed that, as a result of critical slowing down, Systems that undergo a transition from a spatially uniform to
the state of the system that crosses the critical region at @ne of lower symmetry states.
finite pace will inevitably cease to keep up with the changes The paper is organized as follows. The following section
of thermodynamic parameters at some point sufficiently neagontains the generalization of the Halperin formula to de-
the critical temperature. In a homogenous quench, this wilcription of the system populated by randomly distributed
happen everywhere at the same time. The time when th'@npurities. In Sec. Il we consider an example of Spatially
system loses the ability to respond for the changes of exteforrelated noise of Ornstein-Uhlenbeck type. Section IV con-
nal parameters is called freeze-in time. The correlatiorfains remarks.
length at the same time after the transition, i.e., at instant of
time when the system regains capacity to respond to changes
of external parameter$reeze-out timg determines the ini-
tial density of defect network. After this discovery the
progress in this matter concerned mainly on the description The number density of zeros of the scalar field is calcu-

of the systems driven by white Gaussian ndise. lated as a sum over all points, defined by the equation
On the other hand, we know that, in most of the physicalg(t,x,)=0 [8]

contexts, the population of the condensed matter systems by
impurities is inevitable outcome of their preparation. In spite
of the fact that the presence of impurities and admixtures ~ (N) 1 [ (t,x)]
; iaqg N={N,X) = lim——} =1 lim— —) .
may completely change properties of the system, prevailed 2L 2L\ 4 ity
- - L0 L0 T (tx)]

part of the obtained hitherto results concern homogenous 1)
medium.

The phase transition in liquid crystals is a nice example of
the system that can be easily studied experimentally and alsbhe brackets in this formula denote averaging with respect to
can be occupied by impurities. Moreover, liquid crystals al-realizations of the temperature noiée -), and the spatial
low us to study the production of topological defects. How-distributions of the impuritieg- - - }. We calculate the num-
ever, the transition in this system is a little different from theber of produced defects in the overdamp&timodel

Il. THE HALPERIN FORMULA FOR RANDOMLY
DISTRIBUTED IMPURITIES
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2,12
where 7(t,x) represents a temperature noigteis assumed ~pamu2(n) o2 [ _ s
A ) . . ={e Hu dsex ()
that this is a purely white Gaussian ngisE(t,x) represents 0 2(y'?)

a force coming from randomly distributed impurities ants . _

an integral operatd] that follows from a linear fluctuation-  This replacements are possible because for cumul@nend
dissipation relatiorfin case of white Gaussian noise it is just (9) odd terms in Wick expansion of the exponents disappear
damping constany). We assume that random forces are de-(see[8] for detailg. Now we have to calculate the averages

Yap(t,x) =5 (1,X) —a(t) (t,X) — A 3(t, %)+ n(t,X) {u,zeuz,wz> fl . p(  su?
+D(t,), 2) 2(4p'?)

0

fined by the cumulants, of the exponents. For instance,
= *° _ 2 n
{n(t.x))=0, fe-ur2in=" (D[ v
n=0 2"l (¢?)

27y
(Mt X)) = 5T ax—x)a(t-t),  (3) ) .
2n—1)!
2ol

and (@Mt (y?)
{D(t,x)}=0, where we used a Wick theorem. The last series can be easily
summed up
1
{D(t,x)D(t’,x’)}=EW(|x—x’|)5(t—t’). (4) 1
{e’“2’2<‘/’2>}= —_— (11
We intend to calculate the number of kinks produced during {u2
a quench just after the transition time, i.e., at freeze-out time. 1+ N
We know that just before and after instant of transition the ¥

order parameter is so small that a cubic term is negligible in | i
comparison with linear terms. We also assume that in lineal? Similar way we can sum up the other exponents. An inte-
approximation an influence of the thermal noise and the randr@! we average using the same type of expansion and then

dom impurity force on the evolution of the order parameter®¥ changing an order of a sum and the integral we obtain
can be described by additive variables(t,x)= (t,x)

+u(t,x) that satisfy equations of motion, flds[ u’zex;{ - s2u’? ) ] _ u'2y 12
yauh(t,x) =2t x) —a) et ) + 7(t,x),  (5) 0 2(y'?) . {u'2}
(¥'?)

Yy AU(t,x)=d2u(t,x)—a(t)u(t,x) +D(t,x).  (6)

o ) _Now we have averaged number density of zeros produced in
In this situation the number density of produced defects ishe presence of random impurity force,

described by the formula

1 w1 1
Nl R e
= — exp — o o ’
7 N (2 207 2(p'2) JHEiJHw}

L1 | () ('?)
Lo - u’e_“2’2<¢2>fu du e AL o
WJWWW%{ 0 I : vy
@ T (P (u'?) w2 'z
1+ —2 1+ 5
where we have to calculate averages over realizations of the (¥%) (¥'%)
impurity force. In this purpose first we introduce a new in- (13)
tegration variables=u’/u’ and then we replace average of
the products by the product of averages, i.e., Simple algebra provides the formula that in elegant way cor-

responds to Liu-Mazenko-Halperin formula

_ u? _ “’2_ — fa— Uy a—u" 22y ?)
{exr{ 2(4%) 2<¢’2>H_{e e b N (U Ty (14
8 TN (P +{u?}
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Let us notice that this formula provides the way of estima- _ ~ 1.

tion of number density of defects in any spatially correlated {D(t,k)D(t" k") }= EW(|k|)5(k—k')5(t—t')- (22
noise. At this point it is worth to stress that there exists also

the other possible way of entering the noises characterizegh the above mentioned regime the power spectrum has the
by a new length scale. It seems that the presence of quasisym

particles in superfluid liquids provides a bath equipped in

new length and time scales such as the mean free path that 1 _ _ _

can make the noise spatially correlated or even col¢fd). Pt K) ~ —[rret 1 Wrg— 2k We kW (23)

The Liu-Mazenko-Halperii11] formula is restored in case BW

when the random impurity force is absent in Eg), i.e.,

D(t,x)=0 and, thereforefu?}={u’'2=0 The modes connected with the impurity component blows up
at the timet,~ vV W(K) 7. In fact, different modes blow up at
1 [{y'?) different times. The number of produced zeros is determined
n=— W (15  py the obtained in preceding section form¢da). This for-

mula can also be rewritten with the use of the power spec-

trums of the thermal and impurity components
I1l. AN INFLUENCE OF RANDOM SPATIALLY

CORRELATED IMPURITY FORCE ON DEFECT ke v
PRODUCTION . fo dkikeP,+ fo"‘dkkzpu

The Fourier transformation of the equations of motion n=- ' (24)

Km "
P(t,x)=J”_.dke®y(t,k) enables to find Green functions of fo dkP,+ fo dkP,
the equationg5) and (6)

3

- - - - An obvious fact is that a number of produced zeros is infi-
Yot k) + K2t k) +a(t) g(t,k)=n(t,k), (16)  nite. This is a consequence of the structure of the noise.
~ _ 5 _ Although zeros are produced on all scales not all zeros can
W(k)atu(t,k)+kzﬁ(t,k)+a(t)u(t,k)=D(t,k). a7 produce kink structures. We know that only zeros separated
at least by the correlation length can produce stable kinks.
Actually in further calculus we choose units in such a way asstable and unstable modes can be determined from linear-
to havey=1. For instance, the solution of the H46) have  jzed equations of motiof5) and (6). In the language of the

the form Fourier components the stable long range spatial structures
. . can be produced by the unstable modes of the Bds.and

a(t'k):f dtlexp[ _j dt,[k2+a(t,) ]} 7ty ,K). (17) because only those modes can grow to produce stable
—w t; kink structures. Therefore the integration in the form(@4)

(18)  have to be restricted to momentums smaller than cutoff de-
termined from the equatiohﬁ,—te/rzo. Thus the cutoff in
momentum for thermal component is the followirg,
=\to/7=7"Y4 In case of the impurity component the cut-
(Tp(t,k)?ﬁ(t’,k’))t:t,=7>¢(t,k)5(k—k’). (19 off strongly dgpe/n:is on th,e model. This cutoff is a_l solution
of the equationk/,*=W(|k;|)/7. We assume a noise cor-
The solution(18) together with the thermal noise cumulants relator amplitude in the form"/’\/(|k|):a/(1+ L2k?). Under
allows to find the power spectrum. For sufficiently late time choicea= (1/7.AL) this amplitude is the Fourier transforma-

The power spectrum for the variablg is defined by the
equality

it has the form tion of the well known Ornstein-Uhlenbeck distribution
W(|x|)=.4e X"t that in the limitL—0 reducesD(t,x) to
Pyltk)~ E\/;_etzlfe72k2terk4. (200  White Gaussian noise. We consider two cagbsL*> 7 then
B kl ~2/37Y4 (2) L*~ 7 thenk/,~1/L, wherek/ was calcu-

lated from equatiomk,.*=W(|k/,|)/ 7. The number density of
produced defects in the first regime can be approximated as
follows:

This power spectrum blows up &t~ /7. This is the time
when the linear approximation fails, therefore, it is identified
with the freeze-out timéin fact, this is the instant of time
when the nonlinear dynamics enters into description of the
system. On the other hand power spectrum of the impurity n~0.1 1 .
component is defined by the equal time correlator of the (LrY412
second function

(25

_ _ We see that the characteristic length scale of the impurity
{ut,ku(t’ k") =i =Pyt k) S(k—k"). (21)  noise enters the number density of the produced kinks. In the
second regime the number density formula shows the con-
The power spectrum in this case is modified by the functioninuous transition from thermal noise dominance to impurity
W that defines the noise cummulant dominated regimé9]
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1 10.4%0/ 772+ 0.34c/ 2 future kinks. The second component is a correlation length of
n%;\/ 1.81b+0.8% ) (26) the order parameter that provides a length scale describing
minimal separation of kinks. The obvious fact is that if zeros
whereb=1/7* andc=L/+/7. We see that if the impurities are much closer to each other than the correlation length,
are absent or weefke., A is smal) we have classical scaling than the correlation length cutoff completely determines the
n~1/7Y4[5]. On the other hand, if transition takes place for density of produced kinks. This is a case dominated by the
very low temperatures then thermal fluctuations are almoswhite Gaussian thermal noise. On the other hand, if the spa-
absent and the number density is determined by the impurittially correlated noise prevails then the density of the initial

noise length scala~1/L. network of zeros is mainly determined by the noise charac-
teristic length scale. It is reasonable that if at freeze-out time
IV. REMARKS zeros are separated by the distance larger than the correlation

_length then the density of produced kinks is smaller than the

. In present paper we propose an gxtensmn of the desc”'i’fensity of kinks predicted in previous case. In the second
tion of the production of the topological defects to the SyS'regime the noise length scale enters the number density of

tems populated by the impurities. In present approach, we .
demonstrate the comprehensive treatment of impurities as produced kinks formula. We have also shown an example of

spatially correlated additive noise. This approach is a naturz%tﬁe spatial Omstein-Uhlenbeck noise the entrance between

development of the description of the impurities and admix- WO regimes. In. thg regime dormnated bf,g the thermal noise
tures proposed in pap&8]. We know that there exists two € typical scaling is captured, i.er~1/7"" On the other
equally important components of the dynamics leading td'nd: if the impurity noise dominates in the system then the
production of the topological defects. First is a noise thakink distribution is determined by the noise characteristic
provides the large number of zeros, which are candidates fdgngth scalen~1/L.
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